Gastrodin Pretreatment Impact on Sarcoplasmic Reticulum Calcium Transport ATPase (SERCA) and Calcium Phosphate (PLB) Expression in Rats with Myocardial Ischemia Reperfusion
نویسندگان
چکیده
BACKGROUND Calcium overload, inflammation, and apoptosis play important roles in myocardial ischemia-reperfusion injury (MIRI). Gastrodin pretreatment can alleviate MIRI. This study observed sarcoplasmic reticulum calcium transport ATPase (Ca2+-ATPase, SERCA) and calcium phosphate (PLB) protein expression in the ventricular remodeling process after myocardial infarction to explore the effect of gastrodin pretreatment on MIRI. MATERIAL AND METHODS Healthy 7-week-old male SD rats were randomly divided into a sham group (A), a model group (B), and gastrodin pretreatment groups C, D, and E (100, 200, and 400 mg/kg, respectively) with 20 in each group. Anterior descending coronary artery ligation method was used to establish a rat MIRI model with 30-min ischemia and 120-min reperfusion. Cardiac electrophysiological activity was recorded. Serum IL-6 and IL10 levels were determined by ELISA. SERCA activity was tested by colorimetric phosphorus method. SERCA, PLB, and pSer-PLB protein expression were detected by Western blot. RESULTS Compared with the sham group, IL-6 and IL-10 levels were elevated, SERCA2a expression was downregulated, and PLB protein was elevated in the model group (P<0.05). pSer16-PLB showed no significant difference among groups, and the ratio of pSer16-PLB/PLB obviously decreased (P<0.05). IL-6 level gradually declined and IL-10 increased in the gastrodin group following concentration elevation. SERCA 2a expression rose in the gastrodin group in a dose-dependent manner (P<0.05). Elevated PLB protein expression showed no significant difference, while pSer16-PLB protein increased (P<0.05), leading to elevated pSer16 PLB/PLB ratio (P<0.05). CONCLUSIONS Gastrodin pretreatment alleviates MIRI and inflammation injury by regulating SERCA and PLB expression to decrease calcium overload.
منابع مشابه
Expression of calcium regulatory proteins in short-term hibernation and stunning in the in situ porcine heart.
BACKGROUND Myocardial hibernation and stunning are characterised by a reversible contractile dysfunction during and after ischaemia, respectively. Calcium homeostasis might be disturbed in hibernation and stunning due to altered expression of cardiac proteins involved in calcium handling. METHODS In enflurane-anaesthetised swine the coronary blood flow through the left anterior descending cor...
متن کاملThe Effect of Verapamil Administred before the Reperfusion Insult in Isolated Preconditioned Rat Heart on the Microsomal ATPase and Mitochondrial Enzyme Activities
Background: Calcium overload and free radical mediated damage in the mitochondria is the most important pathological changes associated with myocardial ischemic-reperfusion injury. The verapamil post-treatment has been previously reported to prevent reperfusion-induced myocardial injury but functional recovery may be delayed due to the drug's inherent direct myocardial depression effect. In the...
متن کاملrAAV-asPLB transfer attenuates abnormal sarcoplasmic reticulum Ca2+ -ATPase activity and cardiac dysfunction in rats with myocardial infarction.
BACKGROUND Diminished myocardial sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) activity and upregulated phospholamban (PLB) level during cardiac dysfunction, had been reported in many studies. AIMS The current study was designed to examine the effects of rAAV-antisense phospholamban (asPLB) gene transfer on cardiac function, SERCA expression and activity, as well as PLB expression and phosphor...
متن کاملAtomic-level mechanisms for phospholamban regulation of the calcium pump.
We performed protein pKa calculations and molecular dynamics (MD) simulations of the calcium pump (sarcoplasmic reticulum Ca(2+)-ATPase (SERCA)) in complex with phospholamban (PLB). X-ray crystallography studies have suggested that PLB locks SERCA in a low-Ca(2+)-affinity E2 state that is incompatible with metal-ion binding, thereby blocking the conversion toward a high-Ca(2+)-affinity E1 state...
متن کاملThe structural basis for phospholamban inhibition of the calcium pump in sarcoplasmic reticulum.
P-type ATPases are a large family of enzymes that actively transport ions across biological membranes by interconverting between high (E1) and low (E2) ion-affinity states; these transmembrane transporters carry out critical processes in nearly all forms of life. In striated muscle, the archetype P-type ATPase, SERCA (sarco(endo)plasmic reticulum Ca(2+)-ATPase), pumps contractile-dependent Ca(2...
متن کامل